Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
Int Immunopharmacol ; 131: 111917, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527402

RESUMO

Heat Shock protein 90 α (HSP90α), an main subtype of chaperone protein HSP90, involves important biological functions such as DNA damage repair, protein modification, innate immunity. However, the potential role of HSP90α in asthma occurrence and development is still unclear. This study aimed to elucidate the underlying mechanism of HSP90α in asthma by focusing on the cGAS-STING-Endoplasmic Reticulum stress pathway in inflammatory airway epithelial cell death (i.e., pyroptosis; inflammatory cell death). To accomplish that, we modeled allergen exposure in C57/6BL mice and bronchial epithelial cells with house dust mite. Protein technologies and immunofluorescence utilized to study the expression of HSP90α, activation of cGAS-STING pathway and pyroptosis. The effect of inhibitors on HDM-exposed mice detected by histological techniques and examination of bronchoalveolar lavage fluid. Results showed that HSP90α promotes asthma inflammation via pyroptosis and activation of the cGAS-STING-ER stress pathway. Treatment with the HSP90 inhibitor tanespimycin (17-AAG) significantly relieved airway inflammation and abrogated the effect of HSP90α on pyroptosis and cGAS-STING-ER stress in vitro and in vivo models of HDM. Further data indicated that up-regulation of HSP90α stabilized STING through interaction, which increased localization of STING on the ER. Activation of STING triggered ER stress and leaded to pyroptosis-related airway inflammation. The finding showed the potential role of pyroptosis caused by dysregulation of HSP90α on airway epithelial cells in allergic inflammation, suggested that targeting HSP90α in airway epithelial cells might prove to be a potential additional treatment strategy for asthma.


Assuntos
Asma , Piroptose , Camundongos , Animais , Regulação para Cima , Pyroglyphidae , Células Epiteliais , Nucleotidiltransferases/metabolismo , Inflamação/metabolismo
2.
Eur J Pharmacol ; 969: 176459, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38438063

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal and insidious interstitial lung disease. So far, there are no effective drugs for preventing the disease process. Cellular senescence plays a critical role in the development of IPF, with the senescence and insufficient mitophagy of alveolar epithelial cells being implicated in its pathogenesis. Tetrandrine is a natural alkaloid which is now produced synthetically. It was known that the tetrandrine has anti-fibrotic effects, but the efficacy and mechanisms are still not well evaluated. Here, we reveal the roles of tetrandrine on AECs senescence and the antifibrotic effects by using a bleomycin challenged mouse model of pulmonary fibrosis and a bleomycin-stimulated mouse alveolar epithelial cell line (MLE-12). We performed the ß-galactosidase staining, immunohistochemistry and fluorescence to assess senescence in MLE-12 cells. The mitophagy levels were detected by co-localization of LC3 and COVIX. Our findings indicate that tetrandrine suppressed bleomycin-induced fibroblast activation and ultimately blocked the increase of collagen deposition in mouse model lung tissue. It has significantly inhibited the bleomycin-induced senescence and senescence-associated secretory phenotype (SASP) in alveolar epithelial cells (AECs). Mechanistically, tetrandrine suppressed the decrease of mitochondrial autophagy-related protein expression to rescue the bleomycin-stimulated impaired mitophagy in MLE-12 cells. We revealed that knockdown the putative kinase 1 (PINK1) gene by a short interfering RNA (siRNA) could abolish the ability of tetrandrine and reverse the MLE-12 cells senescence, which indicated the mitophagy of MLE-12 cells is PINK1 dependent. Our data suggest the tetrandrine could be a novel and effective drug candidate for lung fibrosis and senescence-related fibrotic diseases.


Assuntos
Células Epiteliais Alveolares , Benzilisoquinolinas , Fibrose Pulmonar Idiopática , Camundongos , Animais , Mitofagia , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Senescência Celular , Fibrose , Proteínas Quinases/metabolismo , Bleomicina/toxicidade , Ubiquitina-Proteína Ligases/metabolismo
3.
J Thorac Dis ; 16(1): 773-797, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38410605

RESUMO

Background: The epidemiology and severity of asthma vary by sex and age. The diagnosis, treatment, and management of asthma in female patients are quite challenging. However, there is hitherto no comprehensive and standardized guidance for female patients with asthma. Methods: Corresponding search strategies were determined based on clinical concerns regarding female asthma. Search terms included "sex hormones and lung development", "sex hormone changes and asthma", "hormones and asthma immune response", "women, asthma", "children, asthma", "puberty, asthma", "menstruation, asthma", "pregnancy, asthma", "lactation, asthma", "menopause, asthma", "obesity, asthma", and "women, refractory, severe asthma". Literature was retrieved from PubMed/Medline, Embase, Cochrane Library, China Biology Medicine disc, China National Knowledge Infrastructure, Wanfang Data with the search date of July 30, 2022 as the last day. This consensus used the Grading of Recommendations Assessment, Development, and Evaluation to evaluate the strength of recommendation and quality of evidence. Results: We collected basic research results and clinical evidence-based medical data and reviewed the effects of sex hormones, classical genetics, and epigenetics on the clinical presentation and treatment response of female patients with asthma under different environmental effects. Based on that, we formulated this expert consensus on the management of female asthma throughout the life cycle. Conclusions: This expert consensus on the management of asthma in women throughout the life cycle provides diagnosis, treatment, and research reference for clinical and basic medical practitioners.

4.
Eur J Med Res ; 29(1): 97, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311782

RESUMO

BACKGROUND: There is no uniform standard for a strongly positive bronchodilation test (BDT) result. In addition, the role of bronchodilator response in differentiating between asthma, chronic obstructive pulmonary disease (COPD), and asthma-COPD overlap (ACO) in patients with a positive BDT result is unclear. We explored a simplified standard of a strongly positive BDT result and whether bronchodilator response combined with fractional exhaled nitric oxide (FeNO) can differentiate between asthma, COPD, and ACO in patients with a positive BDT result. METHODS: Three standards of a strongly positive BDT result, which were, respectively, defined as post-bronchodilator forced expiratory volume in 1-s responses (ΔFEV1) increasing by at least 400 mL + 15% (standard I), 400 mL (standard II), or 15% (standard III), were analyzed in asthma, COPD, and ACO patients with a positive BDT result. Receiver operating characteristic curves were used to determine the optimal values of ΔFEV1 and FeNO. Finally, the accuracy of prediction was verified by a validation study. RESULTS: The rates of a strongly positive BDT result and the characteristics between standards I and II were consistent; however, those for standard III was different. ΔFEV1 ≥ 345 mL could predict ACO diagnosis in COPD patients with a positive BDT result (area under the curve [AUC]: 0.881; 95% confidence interval [CI] 0.83-0.94), with a sensitivity and specificity of 90.0% and 91.2%, respectively, in the validation study. When ΔFEV1 was < 315 mL combined with FeNO < 28.5 parts per billion, patients with a positive BDT result were more likely to have pure COPD (AUC: 0.774; 95% CI 0.72-0.83). CONCLUSION: The simplified standard II can replace standard I. ΔFEV1 and FeNO are helpful in differentiating between asthma, COPD, and ACO in patients with a positive BDT result.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Asma/diagnóstico , Asma/tratamento farmacológico , Testes Respiratórios , Broncodilatadores/farmacologia , Broncodilatadores/uso terapêutico , Volume Expiratório Forçado , Teste da Fração de Óxido Nítrico Exalado , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
5.
Redox Biol ; 70: 103021, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38219573

RESUMO

BACKGROUND: Extracellular high mobility group box 1 (HMGB1) is a key mediator in driving allergic airway inflammation and contributes to asthma. Yet, mechanism of HMGB1 secretion in asthma is poorly defined. Pulmonary metabolic dysfunction is recently recognized as a driver of respiratory pathology. However, the altered metabolic signatures and the roles of metabolic to allergic airway inflammation remain unclear. METHODS: Male C57BL/6 J mice were sensitized and challenged with toluene diisocyanate (TDI) to generate a chemically induced asthma model. Pulmonary untargeted metabolomics was employed. According to results, mice were orally administered allopurinol, a xanthine oxidase (XO) inhibitor. Human bronchial epithelial cells (16HBE) were stimulated by TDI-human serum albumin (HSA). RESULTS: We identified the purine metabolism was the most enriched pathway in TDI-exposed lungs, corresponding to the increase of xanthine and uric acid, products of purine degradation mediated by XO. Inhibition of XO by allopurinol ameliorates TDI-induced oxidative stress and DNA damage, mixed granulocytic airway inflammation and Th1, Th2 and Th17 immunology as well as HMGB1 acetylation and secretion. Mechanistically, HMGB1 acetylation was caused by decreased activation of the NAD+-sirtuin 1 (SIRT1) axis triggered by hyperactivation of the DNA damage sensor poly (ADP-ribose)-polymerase 1 (PARP-1). This was rescued by allopurinol, PARP-1 inhibitor or supplementation with NAD+ precursor in a SIRT1-dependent manner. Meanwhile, allopurinol attenuated Nrf2 defect due to SIRT1 inactivation to help ROS scavenge. CONCLUSIONS: We demonstrated a novel regulation of HMGB1 acetylation and secretion by purine metabolism that is critical for asthma onset. Allopurinol may have therapeutic potential in patients with asthma.


Assuntos
Asma , Proteína HMGB1 , Humanos , Masculino , Camundongos , Animais , Alopurinol/efeitos adversos , Xantina Oxidase , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases , NAD , Camundongos Endogâmicos C57BL , Asma/induzido quimicamente , Asma/tratamento farmacológico , Inibidores Enzimáticos , Inflamação/tratamento farmacológico , Modelos Animais de Doenças
6.
Int Immunopharmacol ; 127: 111328, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38064810

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is an essential element in cellular metabolism that regulates fundamental biological processes. Growing evidence suggests that a decline in NAD+ is a common pathological factor in various diseases and aging. However, its role in airway epithelial barrier function in response to asthma remains underexplored. The current study aims to explore the efficacy of restoring cellular NAD+ concentration through supplementation with the NAD+ precursor, nicotinamide mononucleotide (NMN), in the treatment of allergic asthma and to investigate the role of SIRT3 in mediating the effects of NAD+ precursors. In this research, NMN alleviated airway inflammation and reduced mucus secretion in house dust mite (HDM)-induced asthmatic mice. It also mitigated airway epithelial barrier disruption in HDM-induced asthma in vitro and in vivo. But inhibition of SIRT3 expression abolished the effects of NMN. Mechanistically, HDM induced SIRT3 SUMOylation and proteasomal degradation. Mutation of these two SIRT3 SUMO modification sites enhanced the stability of SIRT3. Additionally, SIRT3 was targeted by SENP1 which acted to de-conjugate SUMO. And down-regulation of SENP1 expression in HDM-induced models was reversed by NMN. Collectively, these findings suggest that NMN attenuates airway epithelial barrier dysfunction via inhibiting SIRT3 SUMOylation in asthma. Blockage of SIRT3 SUMOylation emerges as for the treatment of allergic asthma.


Assuntos
Asma , Sirtuína 3 , Camundongos , Animais , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo , Sumoilação , Pyroglyphidae
7.
J Transl Med ; 21(1): 828, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978543

RESUMO

BACKGROUND: The tumor microenvironment plays a key role in non-small cell lung cancer (NSCLC) development and also influences the effective response to immunotherapy. The pro-inflammatory factor interleukin-17A mediates important immune responses in the tumor microenvironment. In this study, the potential role and mechanisms of IL-17A in NSCLC were investigated. METHODS: We detected IL-17A by immunohistochemistry (IHC) in 39 NSCLC patients. Its expression was correlated with the programmed cell death-ligand1 (PD-L1). IL-17A knockdown and overexpression in A549 and SPC-A-1 cell models were constructed. The function of IL-17A was examined in vitro by wound healing, migration, invasion, plate colony formation and T cell killing assay. Western blot analysis, immunofluorescence assay and IHC were performed to investigate the regulation effects of IL-17A on autophagy in A549 and SPC-A-1. The effect of IL-17A on ROS/Nrf2/p62 signaling pathway was detected. Subcutaneous tumor models were established to examine the tumor-promoting effect of IL-17A in vivo and its effect on immunotherapy. RESULTS: We found a prevalent expression of IL-17A in NSCLC tumor tissues and it was positively correlated with PD-L1 expression (r = 0.6121, p < 0.0001). In vitro, IL-17A promotes lung cancer cell migration, invasion and colony formation ability. Moreover, IL-17A upregulated N-cadherin, Twist, and Snail, and downregulated E-cadherin in NSCLC cells. IL-17A enhanced cell survival in the T cell killing assay. Mechanistically, IL-17A induced ROS production and increased Nrf2 and p62 expression, thereby inhibiting autophagy and reducing PD-L1 degradation. In vivo experiments, anti-IL-17A monoclonal antibody alone slowed the growth of subcutaneous tumors in mice. When combined with anti-PD-L1 monoclonal antibody, tumor tissue expression of PD-L1 was reduced and the therapeutic effect was diminished. CONCLUSION: We found that IL-17A promoted NSCLC progression and inhibited autophagy through the ROS/Nrf2/p62 pathway leading to increased PD-L1 expression in cancer cells. Modulation of IL-17A may affect the therapeutic efficacy of immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Interleucina-17/metabolismo , Antígeno B7-H1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio , Transformação Celular Neoplásica , Carcinogênese , Anticorpos Monoclonais/uso terapêutico , Apoptose , Microambiente Tumoral
8.
Onco Targets Ther ; 16: 913-922, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38021444

RESUMO

Objective: GW4869 is an exosomal inhibitor. It is necessary to delay the occurrence of gefitinib resistance during non-small-cell lung cancer (NSCLC) treatment. This study aimed to investigate the anti-tumor effects of GW4869 on epithelial-mesenchymal transition (EMT) and expression of extracellular heat shock protein 90α (eHSP90α) that contributes to acquired resisitance. Our study provides a new sight into the treatment of EGFR-mutated NSCLC. Materials and Methods: We performed western blotting to detect levels of EMT and eHSP90α. Wound healing and transwell assays were performed to evaluate the behavioral dynamics of EMT. A nude mouse model of HCC827 was established in vivo. Results: GW4869 inhibited the expression of eHSP90α, EMT, invasion and migration abilities of HCC827 and PC9. GW4869 enhanced sensitivity to gefitinib in BALB/c nude mice bearing tumors of HCC827. Conclusion: These studies suggest that GW4869 can inhibit EMT and extracellular HSP90α, providing new strategies for enhancing gefitinib sensitivity in NSCLC.

12.
Thorac Cancer ; 14(21): 2045-2056, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37309281

RESUMO

BACKGROUND: Lung cancer is the most common cancer-related death worldwide. In 2022, the number of daily deaths of lung cancer was estimated to reach around 350 in the United States. Lung adenocarcinoma is the main subtype of lung cancer and patients with malignant pleural effusion (MPE) suffer from poor prognosis. Microbiota and its metabolites are associated with cancer progression. However, the effect of pleural microbiota on pleural metabolic profile of MPE in lung adenocarcinoma patients remains largely unknown. METHODS: Pleural effusion samples collected from lung adenocarcinoma patients with MPE (n = 14) and tuberculosis pleurisy patients with benign pleural effusion (BPE group, n = 10) were subjected to microbiome (16S rRNA gene sequencing) and metabolome (liquid chromatography tandem mass spectrometry [LC-MS/MS]) analyses. The datasets were analyzed individually and integrated for combined analysis using various bioinformatic approaches. RESULTS: The metabolic profile of MPE in lung adenocarcinoma patients were clearly distinguished from BPE with 121 differential metabolites across six significantly enriched pathways identified. Glycerophospholipids, fatty and carboxylic acids, and derivatives were the most common differential metabolites. Sequencing of microbial data revealed nine significantly enriched genera (i.e., Staphylococcus, Streptococcus, Lactobacillus) and 26 enriched ASVs (i.e., species Lactobacillus_delbrueckii) in MPE. Integrated analysis correlated MPE-associated microbes with metabolites, such as phosphatidylcholine and metabolites involved in the citrate cycle pathway. CONCLUSION: Our results provide substantial evidence of a novel interplay between the pleural microbiota and metabolome, which was drastically perturbed in MPE in lung adenocarcinoma patients. Microbe-associated metabolites can be used for further therapeutic explorations.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Microbiota , Derrame Pleural Maligno , Derrame Pleural , Humanos , Derrame Pleural Maligno/patologia , Cromatografia Líquida , RNA Ribossômico 16S/genética , Espectrometria de Massas em Tandem , Adenocarcinoma de Pulmão/complicações , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Biomarcadores Tumorais/metabolismo
13.
J Thorac Dis ; 15(4): 2051-2067, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37197551

RESUMO

Background: Neutrophils can be rapidly recruited and are largely abundant in the airways of patients with asthma. However, whether the polarization and chemotaxis of neutrophils in patients with asthma are abnormal, and the underlying mechanisms, have not been clarified. Pseudopods formation is the initial step of neutrophils' polarization, ezrin, radixin and moesin (ERM) play an important role in the polarization of neutrophils. As an important signaling molecule in cell physiological processes, Ca2+ has been shown to be involved in the polarity changes of neutrophils. This study thus aimed to explore polarization and chemotaxis of neutrophils in patients with asthma and the underlying mechanism. Methods: Fresh neutrophils were isolated using standard separation protocols. The polarization and chemotactic activity of neutrophils were observed using Zigmond chamber and Transwell migration assay under linear concentration gradients of N-formyl-methionine-leucine-phenylalanine (fMLP) or interleukin (IL)-8. The distribution of calcium, ERMs and F-actin in neutrophils were observed by confocal laser scanning microscope. The expression of the main components of ERMs (moesin and ezrin) was detected with reverse transcription-polymerase chain reaction (RT-PCR). Results: Compared with those in the healthy control group, the polarization and chemotaxis of neutrophils in the venous blood of patients with asthma were significantly increased, and the expression and distribution of cytoskeletal proteins F-actin and ezrin were abnormal. The expression and function of key components of store-operated calcium entry (SOCE), stromal interaction molecule 1 (STIM1), STIM2, and Orai1 of neutrophils in patients with asthma were significantly increased. Conclusions: The polarization and chemotaxis of neutrophils in the venous blood of patients with asthma are increased. This may be due to the abnormal expression and distribution of ERM and F-actin as a result of abnormal SOCE function.

14.
Biomed Pharmacother ; 162: 114680, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37060658

RESUMO

BACKGROUND AND PURPOSE: Mitochondrial dysfunction is an essential part of the pathophysiology of asthma, and potential treatments that target the malfunctioning mitochondria have attracted widespread attention. We have previously demonstrated that aberrant epithelial ß-catenin signaling played a crucial role in a toluene diisocyanate (TDI)-induced steroid-insensitive asthma model. The objective of this study was to determine if the mitochondrially targeted antioxidant mitoquinone(MitoQ) regulated the activation of ß-catenin in TDI-induced asthma. METHOD: Mice were sensitized and challenged with TDI to generate a steroid-insensitive asthma model. Human bronchial epithelial cells (16HBE) were exposed to TDI-human serum albumin (HSA) and ethidium bromide(EB) to simulate the TDI-induced asthma model and mitochondrial dysfunction. RESULTS: MitoQ dramatically attenuated TDI-induced AHR, airway inflammation, airway goblet cell metaplasia, and collagen deposition and markedly protected epithelial mitochondrial functions by preserving mass and diminishing the production of reactive oxygen species (ROS). MitoQ administration stabilized ß-catenin destruction complex from disintegration and inhibited the activation of ß-catenin. Similarly, YAP1, an important constituent of ß-catenin destruction complex, was inhibited by Dasatinib, which alleviated airway inflammation and the activation of ß-catenin, and restored mitochondrial mass. In vitro, treating 16HBE cells with EB led to the activation of YAP1 and ß-catenin signaling, decreased the expression of glucocorticoid receptors and up-regulated interleukin (IL)-1ß, IL6 and IL-8 expression. CONCLUSION: Our results indicated that mitochondria mediates airway inflammation by regulating the stability of the ß-catenin destruction complex and MitoQ might be a promising therapeutic approach to improve airway inflammation and severe asthma. AVAILABILITY OF DATA AND MATERIALS: The data that support the findings of this study are available from the corresponding author upon reasonable request. Some data may not be made available because of privacy or ethical restrictions.


Assuntos
Asma , beta Catenina , Humanos , Animais , Camundongos , beta Catenina/metabolismo , Asma/tratamento farmacológico , Compostos Organofosforados , Inflamação , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
15.
Int Immunopharmacol ; 117: 109985, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36893517

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal disease,characterized by an excessive accumulation of extracellular matrix (ECM) proteins in response to chronic lung injury. Current evidence suggests that metabolic reprogramming is always accompanied by myofibroblast activation in IPFof whichthe underlying mechanisms remain unclear. Ring finger protein 130 (RNF130), was demonstrated involved in multiple diseases. However, whether RNF130 plays a critical role in the pathogenesis of IPF needs to be clarified. METHODS: We first investigated the expression of RNF130 in pulmonary fibrosis in vivo and in vitro. We then observed the effect and explored the molecular mechanism of RNF130 on the transition of fibroblast to myofibroblast and aerobic glycolysis. Further, we assessed the effects of adeno-associated virus (AAV)-induced RNF130 overexpression in the pulmonary fibrosis model, conducting pulmonary function, assessment of collagen depositionusing the hydroxyproline assay, and biochemical and histopathological analyses. RESULTS: We found that RNF130 was down-regulated in lung tissues of mice with bleomycin-induced pulmonary fibrosis and lung fibroblasts treated with transforming growth factor-ß1 (TGF-ß1). Then we demonstrated that RNF130 inhibitedthe transition of fibroblast to myofibroblast by suppressing aerobic glycolysis. Mechanistically, we revealed that RNF130 promotedc-myc ubiquitination and degradation, while c-myc overexpression reverses the inhibitory effects of RNF130. Importantly, pulmonary function, collagen deposition and fibroblast differentiation were significantly alleviated in adeno-associated virus serotype (AAV)6-RNF130 treated mice, which further validated the contribution of RNF130/c-myc signaling axis in pulmonary fibrosis pathological process. CONCLUSIONS: In summary, RNF130 participates in the pathogenesis of pulmonary fibrosis by inhibiting the transition of fibroblast to myofibroblast and aerobic glycolysis through promoting c-myc ubiquitination and degradation. Targeting RNF130-c-myc axismightrepresent a promising strategy to alleviate the progression of IPF.


Assuntos
Fibrose Pulmonar Idiopática , Proteínas Proto-Oncogênicas c-myc , Animais , Humanos , Camundongos , Bleomicina/efeitos adversos , Colágeno/metabolismo , Fibroblastos , Glicólise , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Ubiquitinação
17.
Int Immunopharmacol ; 117: 109719, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36827917

RESUMO

BACKGROUND AND PURPOSE: Toluene diisocyanate (TDI)-induced asthma is characterized by mixed inflammation dominated by neutrophils, and is refractory to steroid treatment. Neutrophil extracellular traps (NETs) play an important role in severe asthma, but their role in TDI-induced asthma models is unclear. This study focused on the role and mechanism of NETs in steroid-resistant TDI-induced asthma. METHODS: Induced sputum was collected from 85 asthmatic patients and 25 healthy controls to detect eDNA. A murine TDI-induced asthma model was prepared, and asthmatic mice were given dexamethasone or DNase I. In vitro, the human bronchial epithelial cell line HBE was stimulated with NETs or TDI-human serum albumin (TDI-HSA). RESULTS: Asthma patients had higher sputum eDNA compared to healthy subjects. In asthma patients, eDNA was positively correlated with sputum neutrophils, and negatively correlated with FEV1%predicted. Airway inflammation, airway reactivity, Th2 cytokine levels in lymph supernatant, and levels of NETs were significantly increased in the TDI-induced asthmatic mice. These increases were suppressed by DNase I, but not by dexamethasone. Inhibition of NETs improved interleukin (IL)-8 and MKP1 mRNA expression, and reduced phosphorylation of GR-S226 induced by TDI. Inhibition of NETs improved airway epithelial barrier disruption, as well as p38 and ERK signaling pathways in TDI-induced asthmatic mice. In vitro, NETs promoted the expression of IL-8 mRNA in HBE cells, and reduced the expression of MKP1. IL-8 elevation induced by NETs was suppressed by a p38 inhibitor or ERK inhibitor, but not by dexamethasone. Pretreatment with RAGE inhibitor reduced NETs induced p38/ERK phosphorylation and IL-8 levels in HBE cells. CONCLUSION: Our data suggest that targeting NETs might effectively improved TDI-induced airway inflammation and airway epithelial barrier function. This may potentially be a treatment for patients with steroid-resistance asthma.


Assuntos
Asma , Armadilhas Extracelulares , Tolueno 2,4-Di-Isocianato , Humanos , Animais , Camundongos , Interleucina-8/metabolismo , Armadilhas Extracelulares/metabolismo , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/metabolismo , Inflamação , Dexametasona/efeitos adversos , Esteroides , Modelos Animais de Doenças
18.
Respir Res ; 24(1): 8, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627645

RESUMO

BACKGROUND: Lung fibroblast activation is associated with airway remodeling during asthma progression. Stearoyl-CoA desaturase 1 (SCD1) plays an important role in the response of fibroblasts to growth factors. This study aimed to explore the effects of SCD1 on fibroblast activation induced by transforming growth factor-ß1 (TGF-ß1) and the role of the phosphatidylinositol-3-kinase-AKT serine-threonine protein kinase-mechanistic target of rapamycin (PI3K-Akt-mTOR) pathway on the regulation of SCD1 expression in airway remodeling. METHODS: Female C57BL/6 mice were sensitized and challenged with house dust mites to generate a chronic asthma model. The inhibitor of SCD1 was injected i.g. before each challenge. The airway hyper-responsiveness to methacholine was evaluated, and airway remodeling and airway inflammation were assessed by histology. The effects of SCD1 on fibroblast activation were evaluated in vitro using an SCD1 inhibitor and oleic acid and via the knockdown of SCD1. The involvement of the PI3K-Akt-mTOR-sterol regulatory element-binding protein 1 (SREBP1) pathway in lung fibroblasts was investigated using relevant inhibitors. RESULTS: The expression of SCD1 was increased in fibroblasts exposed to TGF-ß1. The inhibition of SCD1 markedly ameliorated airway remodeling and lung fibroblast activation in peripheral airways. The knockdown or inhibition of SCD1 resulted in significantly reduced extracellular matrix production in TGF-ß1-treated fibroblasts, but this effect was reversed by the addition of exogenous oleic acid. The PI3K-Akt-mTOR-SREBP1 pathway was found to be involved in the regulation of SCD1 expression and lung fibroblast activation. CONCLUSIONS: The data obtained in this study indicate that SCD1 expression contributes to fibroblast activation and airway remodeling and that the inhibition of SCD1 may be a therapeutic strategy for airway remodeling in asthma.


Assuntos
Asma , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Feminino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Ácido Oleico/farmacologia , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/farmacologia , Remodelação das Vias Aéreas , Camundongos Endogâmicos C57BL , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Pulmão/metabolismo , Asma/patologia , Fibroblastos/metabolismo , Sirolimo/farmacologia , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo
19.
Int Immunopharmacol ; 113(Pt A): 109333, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36306558

RESUMO

Epithelial barrier dysfunction is involved in the pathogenesis of asthma. Previous studies show that SUMOylation can regulate epithelial junction molecule localization. However, the role of SUMOylation in epithelial barrier dysfunction in asthma remains unclear. This study found that inhibition of SUMOylation attenuates house dust mite (HDM)-induced epithelial barrier dysfunction. The SUMOylation levels of junction molecules were determined by co-immunoprecipitation (CO-IP) and proximity ligation assay (PLA). HDM treatment significantly enhanced SUMOylation levels of ß-catenin, while no effect was seen on ZO-1, Occludin, and E-cadherin SUMOylation levels. Inhibition of ß-catenin SUMOylation through 2-D08 treatment or SUMOylation modification site mutant (K233A) promoted its membrane localization and repressed Wnt/ß-catenin signaling. Further, we identified that CBX4, an E3 ligase, mediated SUMOylation of ß-catenin. Knockdown of CBX4 promoted ß-catenin membrane localization and improved epithelial barrier function. In vivo analysis showed that AAV6-shCBX4-mediated knockdown of CBX4 attenuated HDM-induced allergic airway inflammation and epithelial barrier dysfunction. The findings showed that inhibiting ß-catenin SUMOylation by targeting CBX4 mitigated HDM-induced epithelial barrier dysfunction in asthma.


Assuntos
Asma , beta Catenina , Animais , Humanos , beta Catenina/metabolismo , Sumoilação , Linhagem Celular , Pyroglyphidae , Asma/patologia , Dermatophagoides pteronyssinus/metabolismo , Ligases/genética , Proteínas do Grupo Polycomb
20.
World J Clin Cases ; 10(28): 10120-10129, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36246801

RESUMO

BACKGROUND: Nocardia paucivorans is an infrequently found bacterium with the potential to cause severe infection, with a predilection for the central nervous system, both in immunocompromised and immunocompetent individuals. Rapid etiological diagnosis of nocardiosis can facilitate timely and rational antimicrobial treatment. Metagenomic next-generation sequencing (mNGS) can improve the rate and reduce the turnaround time for the detection of Nocardia. CASE SUMMARY: A 49-year-old man was admitted to hospital with cough and hemoptysis. Imaging revealed pulmonary consolidation as well as multiple brain lesions. Nocardia asiatica and Nocardia beijingensis were rapidly detected by mNGS of bronchoalveolar lavage fluid (BALF) while bacterial culture of BALF and pathological biopsy of lung tissue were negative. In early stages, he was treated with trimethoprim-sulfamethoxazole (TMP-SMZ) and linezolid by individual dose adjustment based on serum concentrations and the adverse effects of thrombocytopenia and leukopenia. The treatment was then replaced by TMP-SMZ and ceftriaxone or minocycline. He was treated with 8 mo of parenteral and/or oral antibiotics, and obvious clinical improvement was achieved with resolution of pulmonary and brain lesions on repeat imaging. CONCLUSION: mNGS provided fast and precise pathogen detection of Nocardia. In disseminated nocardiosis, linezolid is an important alternative that can give a better outcome with the monitoring of linezolid serum concentrations and platelet count.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...